Plasma environment of a weak comet – Predictions for Comet 67P/Churyumov–Gerasimenko from multifluid-MHD and Hybrid models
نویسندگان
چکیده
The interaction of a comet with the solar wind undergoes various stages as the comet’s activity varies along its orbit. For a comet like 67P/Churyumov–Gerasimenko, the target comet of ESA’s Rosetta mission, the various features include the formation of a Mach cone, the bow shock, and close to perihelion even a diamagnetic cavity. There are different approaches to simulate this complex interplay between the solar wind and the comet’s extended neutral gas coma which include magnetohydrodynamics (MHD) and hybrid-type models. The first treats the plasma as fluids (one fluid in basic single fluid MHD) and the latter treats the ions as individual particles under the influence of the local electric and magnetic fields. The electrons are treated as a charge-neutralizing fluid in both cases. Given the different approaches both models yield different results, in particular for a low production rate comet. In this paper we will show that these differences can be reduced when using a multifluid instead of a single-fluid MHD model and increase the resolution of the Hybrid model. We will show that some major features obtained with a hybrid type approach like the gyration of the cometary heavy ions and the formation of the Mach cone can be partially reproduced with the multifluid-type model. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Kelvin-Helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumov-Gerasimenko
[1] We investigate the plasma environment of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s Rosetta mission. Rosetta will rendezvous with the comet in 2014 at almost 3.5 AU and follow it all the way to and past perihelion at 1.3 AU. During its journey towards the inner solar system the comet’s environment will significantly change. The interaction of the solar wind w...
متن کاملMass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the d...
متن کاملThe presence of clathrates in comet 67P/Churyumov-Gerasimenko.
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by...
متن کاملGIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko
Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma ...
متن کاملGIADA: its status after the Rosetta cruise phase and on-ground activity in support of the encounter with comet 67P/Churyumov-Gerasimenko
Della Corte, V.; Rotundi, A.; Accolla, M.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Rietmeijer, F. J. M.; Ferrari, M.; Lucarelli, F.; Mazzotta Epifani, E.; Ivanovski, S.; Aronica, A.; Cosi, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Fulle, M.; Green, S. F.; Gruen, E.; Herranz, M. L.; Jeronimo, J. M.; Lamy, P.; Lopez Jimenez, A.; McDonnell, J. A. M.; Menn...
متن کامل